
CPSC 565 Term Project Development Guide

Neil Tallim

December 2, 2008

Contents

I Introduction 4

1 Overview 4

2 Why this project idea was developed 4

3 How this system will work 4

3.1 How this system will work on a technical level . 5

3.2 How observers will interact with this system . 5

II Components of the system 5

4 Entities and agents 6

4.1 Unts . 6

4.1.1 Workers . 6

4.1.2 Builders . 6

4.1.3 Warriors . 7

4.1.4 Architects . 7

4.2 Unt colonies and hills . 7

4.3 Threats . 7

4.3.1 Predators . 8

4.3.2 Hunters . 8

4.3.3 Stalkers . 8

4.4 Obstacles . 8

4.4.1 Walls . 8

4.4.2 Sponges . 8

4.5 Resources . 8

4.5.1 Food . 9

4.5.2 Water . 9

1

5 Role assignment 9

5.1 Worker roles . 9

5.1.1 Seeking food . 9

5.1.2 Seeking water . 9

5.1.3 Seeking any resource . 9

5.1.4 Role assignment . 10

5.1.5 Stochastic behaviour . 10

5.2 Warrior roles . 10

5.2.1 Escorting workers . 10

5.2.2 Patrolling territory . 10

5.2.3 Role assignment . 11

6 Simulation rules 11

6.1 Unt energy rules . 11

6.1.1 Energy recovery . 11

6.2 Behavioural triggers . 11

6.2.1 Workers . 12

6.2.2 Warriors . 13

6.2.3 Architects . 13

6.2.4 Threats . 14

6.3 Pheromones . 15

6.3.1 Dispersion . 15

6.3.2 Accumulation . 15

6.3.3 Food pheromones . 15

6.3.4 Water pheromones . 15

6.3.5 Attack pheromones . 16

6.4 Path�nding and movement . 16

6.4.1 Following targets . 16

6.4.2 Following pheromones . 16

6.4.3 Wandering randomly . 16

6.4.4 Wandering while avoiding objects . 17

6.4.5 Returning to the colony . 17

7 Environmental rules 18

7.1 Hills and colonies . 18

7.1.1 Spawning a new generation . 18

7.1.2 Allocating a new generation . 18

7.1.3 Assigning classes to a new generation . 19

7.1.4 Expansion . 19

2

A Con�guration variables 20

A.1 Global environment variables (ENV IRONMENT) . 20

A.1.1 General . 20

A.1.2 Path�nding . 20

A.1.3 Reproduction . 20

A.1.4 Signals . 20

A.2 Colony-speci�c environment variables (ENV IRONMENTcolony) 20

A.2.1 General . 20

A.2.2 Architects (ARCHITECT) . 20

A.2.3 Builders (BUILDER) . 21

A.2.4 Warriors (WARRIOR) . 21

A.2.5 Workers (WORKER) . 21

A.3 Threat-speci�c environment variables (ENV IRONMENT) . 21

A.3.1 Universal (THREAT) . 21

A.3.2 Predators (PREDATOR) . 21

A.3.3 Hunters (HUNTERS) . 22

A.3.4 Stalkers (STALKER) . 22

B Function de�nitions 23

B.1 Global functions . 23

B.2 Agent functions . 23

3

Part I

Introduction

1 Overview

What I am proposing as a term project is a system that simulates a terrarium, containing an arbitrary number
of insect-like factions, loosely modeled after ant colonies, and a number of threats, which seek to eat the ant-like
insects. This system will demonstrate the following features, all of which are modular and open to reimplemen-
tation and reimagination in the future to create a more accurate and interesting simulation (however, they are
simpli�ed right now because of time constraints):

• Agent reproduction and death

• Agent generation based on need

• Resource competition

• Survival behaviour

• Path�nding

• Per-agent behaviour triggered by environmental hints

2 Why this project idea was developed

The goal of this project is to provide the implementor with an understanding of how the workings of independent
agents can a�ect, and even restructure, the operations of an entire culture. Additionally, the e�ects of tiny changes
to the environment, such as the addition of a single wall space, a change in the rate of resource replenishment,
or an adjustment to the aggressiveness of a predator, will be studied to see how they cascade through the system
and how all of the a�ected agents behave as a result.

This system will give insight into the nature of emergent patterns with multiple variables at play, via simulation of a
liberal adaptation of a real-world system. The knowledge learned here will be applied to part of an extracurricular
project currently being formulated.

3 How this system will work

This system will run as a 0-player game with two main active layers: cellular automata to propagate signals
like pheromones, and agents that interact with objects and each other, and which derive information from the
cellular automata layer. (Note, however, that each layer is comprised of multiple elements, described in 3.1 on the
following page) Every iteration (tick), the current state of the �eld will be evaluated and transformed to create
the next state. Most information will be visible to the observer (user) in the form of statistics that may be viewed
by pausing the simulation and investigating the properties of any object, and a graphical �eld rendition will show
where everything in the system is in near-real-time.

A very early conceptual example of what this system might look like in a custom engine is presented below.
However, the �nal system will likely be implemented using Breve on a strictly 2D plane.

4

Figure 1: Early conceptual rendering of the system

3.1 How this system will work on a technical level

To prevent the �turn order� of agents from being a factor when transitioning between iterations, each element
of the �eld � signals, entities, unts (the ant-like agents, see 4.1 on the next page), threats (see 4.3 on page 7)
� will be discretely written to the new state-�eld in order. When writing the new state information, completed
elements will be overlaid on the previous state-�eld (so unts will see the new signal map, but they won't see their
neighbours' new positions) when updating.

All threats and all unts, as members of two isolated pools, will block on their movement events until all of their
peers are ready; this will ensure that they all have fair views of the world around them before interacting with it.
Lastly, threats need to move after unts so that they actually have a chance of killing them (this way, the threats
will be able to move directly towards unts that may be trying to escape, giving them better attack vectors).

3.2 How observers will interact with this system

This system will load con�guration data that speci�es global environment variables, referenced by all agents, and
per-colony/threat-class environment variables that are referenced by speci�c entities. Additionally, con�guration
data specifying the size of the �eld and the location of objects within it will also be fully customizable.

All scenarios will be perfectly reproducible given the same input data, so to simplify the process of revisiting
interesting developments, every time the system is started, a copy of all of its con�guration data will be replicated.
To remove the e�ects of entropy, the con�guration options will include a parameter for seeding the RNG.

Live interaction is not currently planned, but it may be implemented on a level that allows, for example, walls to
be added or removed.

Part II

Components of the system

Note: All logic is entirely unoptimized, and serves only as a reference for thought. The code samples provided are

hardly production-quality, either � in fact, they're procedural, which is de�nitely not how an implementation of a

system like this should be written.

5

4 Entities and agents

As an example of emergent logic, this system will be driven by its agents. However, there will be a minor degree of
�external� organization, enforced by a quasi-elective governing system (the elective attributes come from the fact
that all decisions will be made based on the existence of agents, and agents spawn and die over time in reaction
to their environments).

On a basic level, the mobile objects within the system are its dominant agents, and the immobile ones are entirely
inert agents that merely help to shape the environment around themselves. Entities are immobile agents that
in�uence and react to the behaviour of the mobile agents around them, providing such logical features as intuitive,
though non-explicit, waypoints in path�nding, resource transportation infrastructure, and reproduction.

Put in practical, real-life-like terms, the mobile agents are things like ants and spiders, immobile agents are things
like streams (walls), and entities are like food sources and ant nests that include queens.

4.1 Unts

To cover the fact that this system will only be loosely based on the workings of ant colonies, the �protagonists�
will be referred to as 'unts' (singular: unt, pronounced as 'unit').

Each class of unts that contains more than one role will have its roles assigned based on the rules in 5 on page 9.

There are several classes of unts planned for this system; these are described in the following sections.

4.1.1 Workers

Workers are unts that, for their entire lifespans, repeatedly leave hills in search of resources, which they need to
harvest for the sake of the colony's survival.

Notable traits include the following:

• Most workers will be attracted to harvesting signals (some may only want food and some may only want
water, depending on the needs of the colony); however, some will be repelled by the signals of others, which
will ensure that the colony will always search for new sources. (See 5.1.5 on page 10)

• Workers have a boldness property, which determines how they will behave when threats are around � whether
they will prioritize their own survival or act as martyrs to draw the attention of the colony's warriors.

• Workers will, when exploring for resources, never move towards the hill from which they originated until
they have something to return. This will model semi-systematic behaviour and help to keep resources
�owing.

• When a worker is carrying resources, it will return to the nearest accessible hill that belongs to its colony.
This will help to spread unts based on regional need.

• Workers that are carrying resources will deposit pheromones on every space that they reach while heading
to the nearest hill. (See 6.3 on page 15)

4.1.2 Builders

Builders are inside-workers, unts that reinforce the structure of a colony and hill. However, they exhibit no direct
in�uence on anything in this simulation. Rather, they serve as a metric for evaluating how mature a hill is,
allowing architects to be spawned (see 4.1.4 on the following page), which allows new hills to be formed.

When a new hill is formed, the builders in the hill that �reproduced� will implicitly construct tunnels to the new
location and set it up for use, then change their roles to those of workers and warriors as directed by the colony's
current distribution rules (see 7.1.3 on page 19) to settle it.

6

4.1.3 Warriors

Warriors are unts that exist solely to protect workers.

If workers get slaughtered, their colony will have fewer resources, and threatened hills will become a liability. To
prevent this, warriors serve in two roles:

• Escorts, which follow any gathering-related signal pheromones they sense, keeping threats away from supply
lines.

• Patrollers, which disperse throughout a colony's �territory� and deter threats and invasions before they can
become a problem.

All warriors will respond to any attack signals that they perceive, no matter what role they hold. This will ensure
that threats are dealt with as rapidly as possible. (However, it might also lead to weaknesses in the colony's
defenses, which could possibly allow other threats to enter. The implications of this behaviour are sure to be an
interesting area of study)

4.1.4 Architects

Architects are unts that have the sole task of �nding an appropriate place to construct a new hill. They have
above-average terrain awareness and no return-to-base logic, so they will just keep going until they �nd a suitable
location or die trying (see 7.1.4 on page 19 for an explanation of why this suicidal behaviour is not a problem).

Unfortunately, architects are a necessary pacemaker (directing where expansion will occur, rather than letting it
happen as a result of swarm consensus) due to the lack of time that can be dedicated to this project. However,
they only replace one non-primary logical process, so their pacemaker e�ect is reasonably minimal overall.

4.2 Unt colonies and hills

Unts exist as part of a colony, which consists of one or more hills and some information that describes the classes
that make up its race. In fact, that's really all there is to the de�nition of a colony within this system: a collection
of hills; collected, shared communal resources; the archetypes used to generate new unts; information about when
to spawn a new generation. Colonies have no physical presence.

Hills are actual entities that o�er shelter and path�nding targets for unts, as well as locations where new unts
will appear. However, beyond being gathering points, hills exert no control over how individual unts will behave.

Colonies and hills are e�ectively analogous to countries that consist of a number of cities, all of which are in a
state of quasi-anarchy, with a decentralised government, yet which all freely share information and resources as
needed, like a pure communism. So, while the placement of hills may have a dramatic impact on how colonies
will evolve, they do not a�ect the more primitive patterns of the ecology in which their constituents live.

4.3 Threats

Threats include anything that has the capacity to harm unts, including warrior unts from other colonies. Non-unt
threats may be generically conceptualized as spiders or other predatory insects.

Each class of unt will take a di�erent amount of time for non-unt threats to kill (unt threats attack and kill
instantaneously). This is necessary to allow the defending colony's warriors time to react:

• Workers will take ENV IRONMENTKILL.TIMEW ORKER
iterations

• Warriors will take ENV IRONMENTKILL.TIMEW ARRIOR
iterations

• Architects will take ENV IRONMENTKILL.TIMEARCHIT ECT
iterations

7

After non-unt threats' lifespans have expired, depending on how many unts they consumed while alive, they will
be survived by one or more of their kind:

children = floor(unts : consumed/ENV IRONMENTthreatNOURISHMENT
) + 1

Non-unt threats will not target each other.

4.3.1 Predators

Predators are simple agents that randomly wander the �eld, looking for unts to kill. They will run away from
attack pheromones to avoid their own demise. They will attack any unt that happens to enter their sight as long
as, up 'til the time of the kill, the set of all unts they can see, excluding their target victim, is free of warriors.

4.3.2 Hunters

Hunters behave just like predators, except they will emit random resource pheromones to lure workers to them.
They will stop emitting pheromones upon selecting a victim, and they will only resume the process of depositing
them once they have resumed wandering the �eld. (In terms of behavioural states (see 6.2 on page 11), they
deposit pheromones only while wandering)

4.3.3 Stalkers

Stalkers behave just like predators, except they will respond to resource pheromones, which should lead them
towards paths that are travelled by workers.

4.4 Obstacles

Obstacles are any objects on the �eld that are not hostile to unts, but which impede movement or senses in some
fashion.

4.4.1 Walls

A wall is a space through which physical movement and pheromone detection are impossible. The e�ect of these
objects is three-fold:

1. Objects on the other side of walls cannot be detected, even if they're within the agent's sight radius.

2. Signals on the other side of walls cannot be detected, even if they're within the agent's smell radius.

3. Unts will need to apply special path�nding rules (see 6.4 on page 16) to �nd ways around walls, especially
when heading back to their colony.

4.4.2 Sponges

A sponge does not impede physical movement, but it will absorb all pheromones that reach it. However, sight
through sponges will not be a�ected. They are, essentially, walls that do not carry the �rst and third impacts.

4.5 Resources

Resources are required for a colony to survive. The primary goal of any colony is securing additional resources
and growing as much as possible.

Neither food nor water is inherently more valuable than its counterpart. However, availability and consumption
properties can easily change the priority of either as a simulation progresses.

8

4.5.1 Food

Food is one of two resources required for a colony to survive. It appears in the �eld as a single entity that has
a maximum quantity value (foodCAPACITY), which is replenished by foodREPLENISHMENT ∗ foodCAPACITY

every foodCOOLDOWN iterations.

4.5.2 Water

Water is the second of two resources required for a colony to survive. It appears in the �eld as a single en-
tity that has a maximum quantity value (waterCAPACITY), which is replenished by waterREPLENISHMENT ∗
waterCAPACITY every waterCOOLDOWN iterations.

5 Role assignment

This section describes how unts receive the roles and properties that govern their behaviour in the �eld.

5.1 Worker roles

Workers are responsible for gathering food and water to keep their colony alive. Depending on need, the number
of workers assigned to either task may be disproportionate, or workers may be told to �nd whatever resource they
can.

Note that some workers may exhibit stochastic behaviour, which will cause them to distance themselves from
known supply paths. However, their priorities will remain the same.

5.1.1 Seeking food

Food-seekers will react to food-related pheromone signals and food resources, heading towards these leads to
begin harvesting so they can return what they can �nd to the nearest hill.

If they reach a depleted resource, they will try to �nd an alternative.

5.1.2 Seeking water

Water-seekers will react to water-related pheromone signals and water resources, heading towards these leads to
begin harvesting so they can return what they can �nd to the nearest hill.

If they reach a depleted resource, they will try to �nd an alternative.

5.1.3 Seeking any resource

These workers will react to any resource-related pheromone signals or resource sites, bringing whatever they can
�nd back to the nearest hill. To other unts, they will appear to be seekers of either food or water; the only
di�erence is that these types of unts will be of much more use in establishing local patterns around new hills
because they will swarm on resources much more readily.

If they reach a depleted resource, they will try to �nd another.

9

5.1.4 Role assignment

When a state transition occurs, any workers in a hill will be dispatched. At this point, each worker will individually
receive a role based on whether the colony would be in danger of running out of one type of resource if all of its
unts were to feed at the same time (by determining whether such an event would lead to the starvation of any
unts, were it to happen twice):

• consumptionfood =
∑

colonyuntsconsumption:food

• consumptionwater =
∑

colonyuntsconsumption:water

• riskfood = −(colonyfood:available − (consumptionfood ∗ 2))

• riskwater = −(colonywater:available − (consumptionwater ∗ 2))

i = unt_being_evaluated

i f r i s k . food <= 0 and r i s k . water <= 0 : #No r i s k .
i f random . random () < ENVIRONMENT. colony .WORKER.NO_FOCUS:
i . r o l e = None

else :
i . r o l e = random . cho i c e ((ENUMERATIONS.FOOD, ENUMERATIONS.WATER))

e l i f r i s k . food > 0 and r i s k . water > 0 : #Dire r i s k .
i f random . random () < r i s k . food / (r i s k . food + r i s k . water) : #Proport ional b ias to the weaker supply .
i . r o l e = ENUMERATIONS.FOOD

else :
i . r o l e = ENUMERATIONS.WATER

e l i f r i s k . food > 0 : #Low food .
i f random . random () < (r i s k . food / consumption . food) :
i . r o l e = ENUMERATIONS.FOOD

else :
i . r o l e = random . cho i c e ((ENUMERATIONS.WATER, None))

e l i f r i s k . water > 0 : #Low water .
i f random . random () < (r i s k . water / consumption . water) :
i . r o l e = ENUMERATIONS.WATER

else :
i . r o l e = random . cho i c e ((ENUMERATIONS.FOOD, None))

5.1.5 Stochastic behaviour

Each worker has a ENV IRONMENTcolonyW ORKERST OCHAST IC.P ROBABILIT Y
chance of being a stochastic element.

This property is assigned when the unt is created.

5.2 Warrior roles

Warriors are responsible for keeping a colony's workers safe, ensuring that they can gather vital resources and
explore the colony's �territory� to �nd new resources and suitable locations for expansion.

5.2.1 Escorting workers

Escorts try to stay near supply paths by following the pheromones they sense. In this role, they will help to
prevent threats from disrupting the most vital behaviour of their colony because threats will stay away if they
notice that the swarm is well-protected.

5.2.2 Patrolling territory

Patrollers o�er a means of guarding a colony's territory. They will spread out from the outlying hills of their
colonies and disperse to shape a perimeter that will deter invasion by threats and other colonies.

10

5.2.3 Role assignment

Upon creation, each unt will have a ENV IRONMENTcolonyW ARRIORESCORT
chance of being an escort, rather

than a patroller.

6 Simulation rules

These are rules that cannot be changed by con�guration variables. While they may be adaptive and react
according to the in�uences of con�guration variables, they cannot be directly altered.

These rules are what govern how this simulation is unique.

6.1 Unt energy rules

Each class of unt for each colony has a certain amount of energy, like stamina, that determines how long it can
survive before eating again.

Each iteration, each unt's remaining energy will decrease by one.

All workers will make returning to base their top priority when their energy has fallen to 50%. All warriors will
do the same, unless they are in pursuit of a threat, since protecting workers takes precedence over their own lives.
Builders, never leaving their hills, will ignore their energy level until it hits 0%.

If an unt is outside of a hill (or it is a starved builder) when its energy hits 0%, it dies instantly.

6.1.1 Energy recovery

Whenever an unt leaves a hill (or whenever a builder's energy hits 0%), it eats to replenish its strength; this is
done by consuming its colony's resources. The following algorithm explains how this works. Note that it is quite
simple, and it allows for some fuzziness because accuracy here is not terribly important, at least relative to the
overhead that would be required to deal with whether one unt eats or not.

i = unt_being_evaluated
res tored_ha lves = 0

i f colony . r e s ou r c e s (ENUMERATIONS.FOOD) > 0 :
co lony . r e s ou r c e s (ENUMERATIONS.FOOD) −= \
i . consumption (ENUMERATIONS.FOOD) ∗ (1 − (i . remaining_energy / i . max_energy))

re s tored_ha lves += 1
i f colony . r e s ou r c e s (ENUMERATIONS.FOOD) < 0 :
co lony . r e s ou r c e s (ENUMERATIONS.FOOD) = 0

i f colony . r e s ou r c e s (ENUMERATIONS.WATER) > 0 :
co lony . r e s ou r c e s (ENUMERATIONS.WATER) −= \
i . consumption (ENUMERATIONS.WATER) ∗ (1 − (i . remaining_energy / i . max_energy))

re s tored_ha lves += 1
i f colony . r e s ou r c e s (ENUMERATIONS.WATER) < 0 :
co lony . r e s ou r c e s (ENUMERATIONS.WATER) = 0

i . remaining_energy += ((1 − (i . remaining_energy / i . max_energy)) / 2) ∗ re s tored_ha lves

6.2 Behavioural triggers

This section describes how agents in the system will alter their behaviour based on things they detect in the �eld.

11

6.2.1 Workers

Workers operate in one of two basic modes: wandering and harvesting. When wandering, also referred to as
exploring, workers will move about the �eld, trying not to approach the hill from which they departed. When
harvesting, which is triggered by any lead that hints at the presence of resources that they seek, they will close
in on the lead until they either reach the resource or lose track of it. Upon reaching a resource, they will return
directly to their hill with as much of it as they can carry in tow.

To make this system interesting, some workers exhibit non-social behaviour, as stochastic elements, which causes
them to actively avoid known resources in hopes of discovering new ones.

Workers also have the curious property of aggression: depending on the nature of the colony, workers may exhibit
varying degrees of aggressiveness, which will dictate whether they will seek to initiate combat, directing the
colony's warriors to areas where they are needed, or whether they will run to safety, keeping the number of
worker deaths down at the cost of productivity.

Behavioural logic

i = unt_being_evaluated

#Clear unneeded avoidances .
for avoid in i . getAvoidances () :
i f not i . canSense (avoid) :
i . c l earAvoidance (avoid)

i f i . s t a tu s == ENUMERATIONS.FOLLOWING:
i f not e x i s t s (i . t a r g e t) :
i . s t a tu s = ENUMERATIONS.WANDERING

i f i . s t a tu s == ENUMERATIONS.WANDERING or (i . s t a tu s == ENUMERATIONS.FOLLOWING and i s S i g n a l (i . t a r g e t)) :
su ic ide_run = False #Used to prevent d i s t r a c t i on s whi le charging a threa t .
th r e a t s = [agent <− i . agentsInLoS () | i sThreat (i , agent)]
i f th r e a t s :
i f i . a gg r e s s i on == ENUMERATIONS.BOLDNESS.AGGRESSIVE:
i . f o l l ow (th r ea t s [0]) #Switches to f o l l ow ing .
i . c l earAvo idances () #Make the path s t r a i g h t .
su ic ide_run = True

e l i f i . a gg r e s s i on == ENUMERATIONS.BOLDNESS.ASSERTIVE:
pass #Whatever happens happens .
e l i f i . a gg r e s s i on == ENUMERATIONS.BOLDNESS.PASSIVE :
i . avoid (th r e a t s [0]) #Doesn ' t change s ta te , but a f f e c t s path f ind ing .

i f not suic ide_run : #Not charging a threa t .
th r ea t_s i gna l s = [s i g n a l <− i . s i gna l s InLoS () | s ignalType (s i g n a l) == ENUMERATIONS.THREAT]
food_s igna l s = [s i g n a l <− i . s i gna l s InLoS () | s ignalType (s i g n a l) == \
ENUMERATIONS.FOOD, −90 < abs (ang l eO f f s e t (i , i . n e a r e s tH i l l ()) − ang l eO f f s e t (i , s i g n a l)) > 90]
water_s igna l s = [s i g n a l <− i . s i gna l s InLoS () | s ignalType (s i g n a l) == \
ENUMERATIONS.WATER, −90 < abs (ang l eO f f s e t (i , i . n e a r e s tH i l l ()) − ang l eO f f s e t (i , s i g n a l)) > 9 0]]
i f th r ea t_s i gna l s :
i . avoid (s t r ong e s t S i gna l (th r ea t_s i gna l s)) #Doesn ' t change s ta te , but a f f e c t s path f ind ing .

i f i . r o l e == ENUMERATIONS.FOOD:
i f f ood_s igna l s :
i f not i . i s S t o c h a s t i c () :
i . f o l l ow (s t r ong e s t S i gna l (food_s igna l s)) #Switches to f o l l ow ing .

else :
i . avoid (s t r ong e s t S i gna l (food_s igna l s)) #Affec t s path f ind ing .

e l i f i . r o l e == ENUMERATIONS.WATER:
i f water_s igna l s :
i f not i . i s S t o c h a s t i c () :
i . f o l l ow (s t r ong e s t S i gna l (water_s igna l s)) #Switches to f o l l ow ing .

else :
i . avoid (s t r ong e s t S i gna l (water_s igna l s)) #Affec t s path f ind ing .

else :
i f f ood_s igna l s or water_s igna l s :
i f not i . i s S t o c h a s t i c () :
i . f o l l ow (s t r ong e s t S i gna l (food_s igna l s + water_s igna l s)) #Switches to f o l l ow ing .

else :
i . avoid (s t r ong e s t S i gna l (food_s igna l s + water_s igna l s)) #Affec t s path f ind ing .

i . move () #Update pos i t i on .

i f i . s t a tu s == ENUMERATIONS.RETURNING: #Deposit appropriate pheremones .
i . producePheremone (resourceType (i . c a r ry ing))

else :
food = [r e sou r c e <− i . r e sources InLoS () | resourceType (r e sou r c e) == ENUMERATIONS.FOOD]
water = [r e sou r c e <− i . r e sources InLoS () | resourceType (r e sou r c e) == ENUMERATIONS.WATER]

i f i . r o l e == ENUMERATIONS.FOOD:

12

i f food :
i f d i s t ance (i , food [0]) == 1 :
i f i . harves t (food [0]) :
i . s t a tu s = ENUMERATIONS.RETURNING #Switches to returning .
i . c l earAvo idances ()

else :
i . avoid (food [0]) #Look for another source .
i . s t a tu s = ENUMERATIONS.WANDERING #Switches to wandering .

else :
i . f o l l ow (food [0]) #Switches to f o l l ow ing .

e l i f i . r o l e == ENUMERATIONS.WATER:
i f water :
i f d i s t ance (i , water [0]) == 1 :
i f i . harves t (water [0]) :
i . s t a tu s = ENUMERATIONS.RETURNING #Switches to returning .
i . c l earAvo idances ()

else :
i . avoid (water [0]) #Look for another source .
i . s t a tu s = ENUMERATIONS.WANDERING #Switches to wandering .

else :
i . f o l l ow (water [0]) #Switches to f o l l ow ing .

else :
i f food or water :
i f d i s t ance (i , (food + water) [0]) == 1 :
i f i . harves t ((food + water) [0]) :
i . s t a tu s = ENUMERATIONS.RETURNING #Switches to returning .
i . c l earAvo idances ()

else :
i . avoid ((food + water) [0]) #Look for another source .
i . s t a tu s = ENUMERATIONS.WANDERING #Switches to wandering .

else :
i . f o l l ow ((food + water) [0]) #Switches to f o l l ow ing .

6.2.2 Warriors

Any warrior will attack the closest threat within range. This applies to any warriors that are patrolling or
escorting.

Threats that are active (fellow unts are attacking them or they have attacked a fellow unt) will be located based
on pheromone signals and sight.

Behavioural logic

i = unt_being_evaluated

i f i . s t a tu s == ENUMERATIONS.FOLLOWING:
i f not e x i s t s (i . t a r g e t) :
i . s t a tu s = ENUMERATIONS.WANDERING

i f i . s t a tu s in (ENUMERATIONS.WANDERING, ENUMERATIONS.FOLLOWING) :
th r e a t s = [agent <− i . agentsInLoS () | i sThreat (i , agent)]
i f th r e a t s :
i . f o l l ow (th r ea t s [0]) #Switches to f o l l ow ing .

else : #Check pheremones .
th r e a t s = [s i g n a l <− i . s i gna l s InLoS () | s ignalType (s i g n a l) == ENUMERATIONS.THREAT]
i f th r e a t s :
i . f o l l ow (s t r ong e s t S i gna l (th r ea t s)) #Switches to f o l l ow ing .

else :
i f i . r o l e == ENUMERATIONS.ESCORT: #Stay near worker t r a i l s .
s i g n a l s = [s i g n a l <− i . s i gna l s InLoS () | s ignalType (s i g n a l) in (ENUMERATIONS.FOOD, ENUMERATIONS.WATER)]
i f s i g n a l s :
i . f o l l ow (s t r ong e s t S i gna l (s i g n a l s)) #Switches to f o l l ow ing .

i . move () #Update pos i t i on .

i f i . s t a tu s == ENUMERATIONS.FOLLOWING and i sAgent (i . t a r g e t) :
i f d i s t ance (i , i . t a r g e t) <= 1 :

i . at tack (i . t a r g e t) #May be a su i c ide at tack to i n f l i c t damage .
i f i . i sA l i v e () : #Won and surv ived .
i . s t a tu s = ENUMERATIONS.RETURNING #Go back to base and recover .

6.2.3 Architects

Architects just move until they �nd a suitable building location. This is determined by proximity to resources
and distance from hills (architects can sense friendly hills 2r away, where r is the radius of their resource-sensing

13

capabilities. This will prevent two hills from focusing on the same resource).

When moving, architects always move away from their base hill.

Behavioural logic

i = unt_being_evaluated

i . move () #Update pos i t i on .

#Make sure there are no h i l l s nearby .
i f not [h i l l <− i . co lony . h i l l s | d i s t ance (i , h i l l) < ENVIRONMENT.MIN_BUILD_DISTANCE] :
#Check to see whether food or water i s pre ferred and bu i l d i f in range .
food_sources = [r e sou r c e <− i . r e sources InLoS () | resourceType (r e sou r c e) == ENUMERATIONS.FOOD]
water_sources = [r e sou r c e <− i . r e sources InLoS () | resourceType (r e sou r c e) == ENUMERATIONS.WATER]

i f i . r o l e == ENUMERATIONS.FOOD:
i f food_sources :
i . bu i ld () #Ends l i f e .

e l i f i . r o l e == ENUMERATIONS.WATER:
i f water_sources :
i . bu i ld () #Ends l i f e .

e l i f food_sources or water_sources :
i . bu i ld () #Ends l i f e .

6.2.4 Threats

When a threat is on the prowl, it will choose any available prey by applying rules similar to the unts' warrior
algorithm. If it �nds no prey, it will behave according to whatever is normal for its species (see 4.3 on page 7).

Escaping, target-following, and attacking threats will not exhibit pheromone-based behaviour. Note that threats
that follow signals will only go towards concentration points to keep them near prey paths, but they will not sit
directly on prey paths (to avoid escorting warriors).

Behavioural logic

i = threat_being_evaluated

i f i . s t a tu s == ENUMERATIONS.WANDERING:
prey = [agent <− i . agentsInLoS () | isUnt (agent)]
i f l en (prey) == 1 :
i . at tack (prey [0]) #Nothing threatening nearby .

e l i f l en (prey) > 1 :
i f not conta insWarr ior (prey [1 :]) : #Make sure there ' s nothing threatening .
i . f o l l ow (prey [0]) #Sets s ta tu s to f o l l ow ing .

e l i f i . s t a tu s == ENUMERATIONS.FOLLOWING:
i f e x i s t s (i . t a r g e t) :
t h r e a t s = [agent <− i . agentsInLoS () | not agent == i . t a r g e t and i sWarr io r (agent)]
i f th r e a t s :

i . s t a tu s = ENUMERATIONS.WANDERING #Abandon the hunt .
else :
i . s t a tu s = ENUMERATIONS.WANDERING

e l i f i . s t a tu s == ENUMERATIONS.KILLING :
i . p r o g r e s sK i l l () #Count down the t i c k s un t i l movement i s po s s i b l e . Switches to r e t r ea t ing when done .

e l i f i . s t a tu s == ENUMERATIONS.RETREATING: #While re t rea t ing , movement i s s t r a i g h t .
i f s i gna lS t r eng th (i . l o ca t i on , THREAT) == 0 :
i . s t a tu s = ENUMERATIONS.WANDERING #Safe enough .

else :
t h r e a t s = [agent <− i . agentsInLoS () | i sThreat (i , agent)]
i f th r e a t s : #Retreat from the c l o s e s t one .
i . r o t a t e (ang l eO f f s e t (i , t h r e a t s [0]) + 180) #Run d i r e c t l y away from the nearest threa t .

i . move () #Update loca t ion .

i f i . s t a tu s == ENUMERATIONS.FOLLOWING:
i f not i s S i g n a l (i . t a r g e t) :
i f d i s t ance (i , i . t a r g e t) <= 2 :
i . k i l l (i . t a r g e t) #Sets s ta tu s to k i l l i n g .

e l i f i . s t a tu s == ENUMERATIONS.WANDERING and s p e c i e s (i) == Sta lk e r :
l e ad s = [s i g n a l s <− i . s i gna l s InLoS () | s ignalType (s i g n a l) in (ENUMERATIONS.FOOD, ENUEMRATIONS.WATER)]
i f l e ad s :
i . f o l l ow (s t r ong e s t S i gna l (l e ad s)) #Sets s ta tu s to f o l l ow ing .

14

6.3 Pheromones

Pheromones, also referred to as signals, are a medium by which information about the �eld and its agents can
travel. They o�er an imprecise method of directing agents towards areas of interest.

Each space may have any quantity of any number of di�erent pheromones; they do not interfere with one another.

Each colony produces its own set of pheromones that are meaningless to every other colony; threats produce and
follow pheromones in a colony-independent manner.

Every unt has the ability to sense pheromones nearby, just as they can sense agents. An unt does not necessarily
need to be in physical contact with pheromones, unless it has a sensing range of 0.

6.3.1 Dispersion

Every cycle, the pheromones in each space will weaken, and the pheromones in adjacent spaces will increase
slightly, until the concentration is too weak to persist. Pheromones strength will degrade according to the
following formula:

strengthnew = floor(strengthold ∗ ENV IRONMENTSIGNALSDISP ERSION.F ACT OR
)

At the same time, based on the old strength of the pheromone, every surrounding space in the surrounding von
Neumann neighbourhood will be given a quantity of the pheromone based on the following formula:

strength = floor(strengthsource ∗ ENV IRONMENTSIGNALSSP READ.F ACT OR..NEUMANN
)

Lastly, every non-overlapping space in the Moore neighbourhood will be given a quantity of the pheromone based
on this formula:

strength = floor(strengthsource ∗ ENV IRONMENTSIGNALSSP READ.F ACT OR.MOORE
)

6.3.2 Accumulation

Because pheromones have the potential to spread, they will collide in practice, and this, naturally, will cause
them to become more intense. The following formula deals with this property, based on a list, signals, of all
pheromones that hit any given space during the current cycle transition:

strength = floor(max(signals)+
∑

[ENV IRONMENTSIGNALSCOLLISION.F ACT OR
∗(signals−max(signals))])

This means that the strongest pheromone is used as the space's base, then a fraction of every other pheromone
is added to it to get reasonable results.

6.3.3 Food pheromones

Food pheromones are dropped by worker unts who are carrying food back to a hill. Every cycle, a concentration
of ENV IRONMENTcolonyP HEREMONES

is deposited in the unt's current space.

Threats may deposit ENV IRONMENTHUNTERSP HEREMONES
each cycle, if they are hunters.

6.3.4 Water pheromones

Water pheromones are dropped by worker unts who are carrying water back to a hill. Every cycle, a concentration
of ENV IRONMENTcolonyP HEREMONES

is deposited in the unt's current space.

Threats may deposit ENV IRONMENTHUNTERSP HEREMONES
each cycle, if they are hunters.

15

6.3.5 Attack pheromones

Attack pheromones are left behind whenever any unt is killed. They alert other unts to the presence of danger.

ENV IRONMENTcolonyP HEREMONES.AT T ACK
will be dropped on the space of the agent that killed the unt.

6.4 Path�nding and movement

Path�nding rules dictate what happens during agents' movement phases. It is here that navigation to objects is
described, as well as how avoidance logic functions.

6.4.1 Following targets

The logic used to follow targets, whether agents or other entities, is quite straightforward: turn to face the goal
and advance; if the target cannot be seen, just go straight, since the current direction was its last-known location;
if going straight is impossible, pick a random direction no more than 90 degrees from the current heading and go
that way.

Movement logic

i = agent_being_evaluated

i f i . t a r g e t in i . agentsInLoS () :
i . f a c e (i . t a r g e t)

i f not i . advance () : #There ' s a wa l l tha t i s b lock ing progress .
i . r o t a t e (random . cho i c e ((−45 , 45))) #Pick a new d i rec t i on .
i . advance () #Try tak ing one s tep in the new d i rec t i on be fore ending the turn .

6.4.2 Following pheromones

The logic used to follow pheromones is similar to that used to follow targets: keep going straight (since pheromones
don't move, the agent does not need to realign itself at every step) until the target has been reached; if going
straight is impossible (because of a wall), the strongest like pheromone in the Moore neighbourhood is followed
instead.

Movement logic

i = agent_being_evaluated

i f i . t a r g e t . l o c a t i o n == i . l o c a t i o n : #Destination reached .
i f not i . s t a tu s == ENUMERATIONS.RETURNING:
i . s t a tu s = ENUMERATIONS.WANDERING #Stop fo l l ow ing the s i gna l .

else :
i . s t a tu s = ENUMERATIONS.RETURNING #I f the unt was using t h i s as a guide , go back to returning .

e l i f not i . advance () : #There ' s a wa l l tha t i s b lock ing progress .
i . f o l l ow (s t r ong e s t S i gna l ([s i g n a l <− i . s i gna l s InMoore () | s ignalType (s i g n a l) == \
signalType (i . t a r g e t)])) #Follow the s t ronges t c l o se s i gna l .
i . advance () #Walk to the new targe t .
i . s t a tu s = ENUMERATIONS.WANDERING #New targe t reached .

6.4.3 Wandering randomly

When wandering, agents will go straight with a ENV IRONMENTWANDER.V ARIANCE probability of turning
45 degrees to either side with each step. This process will continue unless a wall is hit or the agent is no longer
wandering.

Movement logic

i = agent_being_evaluated

i f random . random () < ENVIRONMENT.WANDER_VARIANCE: #Decide whether to turn .
i . r o t a t e (random . cho i c e ((−45 , 45)))

i . advance ()

16

When a wall is encountered during an advance(), agents will randomly choose a new direction in which to travel,
though workers will behave slightly di�erently because it is not in their interest to head back towards their colony
if avoiding it is at all possible.

Wall-collision logic

i = agent_being_evaluated

paths = [space <− i . spacesInMoore () | isOpen (space)] #Survey the area .
i f isWorker (i) :
paths = [space <− paths | \
abs (ang l eO f f s e t (i , space) − ang l eO f f s e t (i , i . depar ted_hi l l)) > 45] #Try to move l a t e r a l l y .

i f paths : #Randomly choose one .
i . r o t a t e (ang l eO f f s e t (i , random . cho i c e (paths)))

else :
i . r o t a t e (180) #Go backwards .

6.4.4 Wandering while avoiding objects

When an agent is trying to avoid an object (always the closest one to it, at least in the early stages of implemen-
tation), it will attempt to maintain at least the same distance from it after moving that it held prior to moving �
it will either move away from it, or try to move in a circular ring around it. Workers that are avoiding an object,
like a threat, will scatter and become disoriented until the threat passes; this can cause major changes in supply
chains � changes that have the potential to be very interesting.

Movement logic

i = agent_being_evaluated

paths = [space <− i . spacesInMoore () | isOpen (space) , \
abs (ang l eO f f s e t (i , space) − ang l eO f f s e t (i , n ea r e s t (i , i . avoid))) > 45] #Move l a t e r a l l y .

i f paths : #Pick one to take .
i . r o t a t e (ang l eO f f s e t (i , random . cho i c e (paths))

else : #Impossib le to ge t away , so try to move past the ob j ec t at an angle .
r isky_paths = [space <− i . spacesInMoore () | isOpen (space) , ang l eO f f s e t (i , space) in (135 , 225)]
i f r isky_paths : #Pick one to take .
i . r o t a t e (ang l eO f f s e t (i , random . cho i c e (r isky_paths)))

else : #The only path open leads to the ob j ec t tha t must be avoided .
return #Stay put and hope a path opens .

i . advance ()

6.4.5 Returning to the colony

When an unt starts its return trek, it will turn to face the nearest hill (don't ask how it knows where that is; it
just knows). It will then proceed to move in a straight line as far as possible, stopping only if it hits a wall. Upon
recovering, it continues towards the nearest hill from its new location.

Movement logic

i = agent_being_evaluated

i f i . s t a t e == ENUMERATIONS.DETOURING:
n ea r e s t_h i l l = i . l o c a t eNea r e s tH i l l ()
i f c learPath (i , n e a r e s t_h i l l) : #No obs t a c l e s in the way .
i . r o t a t e (ang l eO f f s e t (i , n e a r e s t_h i l l)) #Change t ra j e c t o r y .

else :
nearby_signals = [s i g n a l <− i . s i gna l s InLoS () | s ignalType (s i g n a l) in (ENUMERATIONS.FOOD, ENUMERATIONS.WATER) , \
−45 <= ang l eO f f s e t (i , s i g n a l) <= 45]
i f nearby_signals :
#Other paths are nearby (in f ront of the unt , to avoid backtrack ing) ,
#so use t h e i r l oca t ion as a guide .
i . f o l l ow (s t r ong e s t S i gna l (nearby_signals))

e l i f i . s t a t e == ENUMERATIONS.BACKTRACKING: #Stop backtrack ing ASAP.
d i r e c t i o n s = [space <− i . spacesInMoore () | isOpen (space) , ang l eO f f s e t (i , space) not in (0 , 180)]
i f d i r e c t i o n s : #I t ' s po s s i b l e to change course , so do i t .
i . r o t a t e (ang l eO f f s e t (i , random . cho i c e (d i r e c t i o n s)))
i . s t a t e = ENUMERATIONS.DETOURING

i . advance ()

17

When a wall is encountered during an advance(), the unt will make a decision. The outcome will determine how
it tries to �nd a path back to its colony.

Wall-collision logic

fork_paths = [space <− i . spacesInMoore () | isOpen (space) , −90 < ang l eO f f s e t (i , space) < 90]
i f fork_paths : #Try to go as s t r a i g h t as po s s i b l e .
i . r o t a t e (ang l eO f f s e t (i , random . cho i c e (fork_paths)))
i . s t a t e = ENUMERATIONS.DETOURING

else :
d i r e c t i o n s = [space <− i . spacesInMoore () | isOpen (space) , not ang l eO f f s e t (i , space) == 180]
i f d i r e c t i o n s : #Go any way po s s i b l e .
i . r o t a t e (ang l eO f f s e t (i , random . cho i c e (d i r e c t i o n s)))
i . s t a t e = ENUMERATIONS.DETOURING

else : #Go backwards ; t h i s i s a dead end .
i . r o t a t e (180)
i . s t a t e = ENUMERATIONS.BACKTRACKING

7 Environmental rules

This section describes rules that are entirely dependent upon con�guration parameters and the net result of their
interactions over time. These rules include such things as how di�erent classes are selected during reproduction,
and how new hills are established. It is here that the emergent properties of the system �ourish and come together
to produce complex, nigh-unpredictable results.

7.1 Hills and colonies

A colony is de�ned as a related collection of independently managed hills. Post-instantiation, no parent-child
relationship exists between hills. To make this property sustainable, each hill will be responsible for raising
generations of unts that are distributed to suit the environment that surrounds it.

7.1.1 Spawning a new generation

A colony may spawn a new generation of unts every time the tick-count colonyreproduction reaches 0, with the
quantity of new unts being decided by the following formula:

untsnew = min(surplusfood, surpluswater) ∗ colonypopulation

• surplusfood = (colonyfood:available−
∑

colonyuntzconsumption:food
)∗ENV IRONMENTRESOURCES.RESERV E

• surpluswater = (colonywater:available−
∑

colonyuntzconsumption:water)∗ENV IRONMENTRESOURCES.RESERV E

If the number of new unts is less than ENV IRONMENTGENERATION.MINIMUM of the colony's current popu-
lation, then colonyreproduction will temporarily be set to ENV IRONMENTREPRODUCTION.DELAY , to prevent a
colony from imploding when it should just wane a little. Else, colonyreproduction = ENV IRONMENTREPRODUCTION

in preparation for the next cycle.

7.1.2 Allocating a new generation

All spawned unts will be initially distributed among their colony's hills based on their current populations relative
to the population of the colony. The following logic will be employed:

1. Each hill will be assigned a colonyhillpriority
score equal to the result of the following formula, with each

variable computed since the last spawn:

priority = prioritycontrol + prioritysurvival + priorityrace + prioritysize

18

• prioritycontrol = ENV IRONMENTIMPORTANCEEXP ANSION
∗ colonyhillbuilders

• prioritysurvival = ENV IRONMENTIMPORTANCET ERRIT ORY
∗(colonyhillworkers:lost

+colonyhillwarriors:lost
)

• priorityrace = ENV IRONMENTIMPORTANCERESOURCES
∗((colonyhillfood:gathered

/colonyfood:gathered)+
(colonyhillwater:gathered

+ colonywater:gathered))
• prioritysize = ENV IRONMENTIMPORTANCEGROW T H

∗ (colonypopulation/colonyhillpopulation
)

2. Each hill will receive untsassigned = (colonyhillpriority
/
∑

colonyhillspriority
) ∗ untsnew new unts.

7.1.3 Assigning classes to a new generation

When a hill receives a new generation of unts, each one will be cast into a class depending on the needs of the
hill. The following rules will be applied to determine the class breakdown, with each value being counted since
the creation of the last generation (resource counts are per-return event, not per-unt):

• killed = (colonyhillworkers:killed
+ colonyhillwarriors:killed

)

• available = untsassigned − killed

• harvesting = (1−(colonyhillworkers:returned.without
/colonyhillworkers:returned

))∗ENV IRONMENTcolonyW ORKER.GROW T H

• insecurity =
{

safe if killed = 0
unsafe otherwise

◦ safe =


1 if colonyhillwarriors

≤ colonyhillpopulation
∗

ENV IRONMENTcolonyW ARRIORP OP ULAT ION.MINIMUM

ENV IRONMENTcolonyW ARRIORDECAY
otherwise

◦ unsafe = ENV IRONMENTcolonyW ARRIORGROW T H
+ (killed/(colonyhillworkers

+ colonyhillwarriors
+

killed))

• targetworkers = harvesting ∗ colonyhillworkers:lastgen

• targetwarriors = insecurity ∗ colonyhillwarriors:lastgen

• if targetworkers + targetwarriors ≤ available:

◦ untsworkers = colonyhillworkers:killed
+ targetworkers

◦ untswarriors = colonyhillwarriors:killed
+ targetwarriors

◦ untsbuilders = available− untsworkers − untswarriors

• else:

◦ untsworkers = colonyhillworkers:killed
+ available ∗ (targetworkers/(targetworkers + targetwarriors))

◦ untswarriors = colonyhillwarriors:killed
+ available ∗ (targetwarriors/(targetworkers + targetwarriors))

◦ untsbuilders = 0

If the number of unts being replaced due to unnatural death exceeds the number of new unts being added, the
new ones will be allocated proportionally between workers and warriors, with no unts cast into other classes. The
numbers cast in this case follows:

• untsworkers = untsnew ∗ (colonyhillworkers:killed
/(colonyhillworkers:killed

+ colonyhillwarriors:killed
))

• untswarriors = untsnew ∗ (colonyhillwarriors:killed
/(colonyhillworkers:killed

+ colonyhillwarriors:killed
))

7.1.4 Expansion

If colonyhillunts:builders
≥ ENV IRONMENTcolonyARCHIT ECTSP AW INING.BUILDER.RAT IO

∗ colonyhillpopulation
, then

the hill will spawn an architect independently of the other units it raises; only one architect may exist per hill
at any given time. Architects are not guaranteed to �nd a suitable building site before they expire and, in fact,
may never �nd such a site if they come from the middle of a well-established colony.

19

A Con�guration variables

A.1 Global environment variables (ENV IRONMENT)

A.1.1 General

MIN.BUILD.DISTANCE = 100

A.1.2 Path�nding

WANDER.V ARIANCE = 0.1

A.1.3 Reproduction

GENERATION.MINIMUM = 0.25

IMPORTANCEEXPANSION = 0.5

IMPORTANCEGROWTH = 0.25

IMPORTANCERESOURCES = 1.0

IMPORTANCETERRITORY = 0.5

REPRODUCTION = 10, 000

REPRODUCTION.DELAY = 1, 000

RESOURCES.RESERV E = 0.15

A.1.4 Signals

SIGNALSDISPERSION.FACTOR = 0.75

SIGNALSSPREAD.FACTOR.NEUMANN = 0.5

SIGNALSSPREAD.FACTOR.MOORE = 0.33

SIGNALSCOLLISION.FACTOR = 0.1

A.2 Colony-speci�c environment variables (ENV IRONMENTcolony)

A.2.1 General

PHEREMONES = 75

PHEREMONES.ATTACK = 100

LIFESPAN = ENV IRONMENT + 2, 500

A.2.2 Architects (ARCHITECT)

ENERGY = 500

SPAWNING.BUILDER.RATIO = 0.25

SIGHT = 20

20

A.2.3 Builders (BUILDER)

CONSUMPTIONFOOD = 0.75

CONSUMPTIONWATER = 0.75

A.2.4 Warriors (WARRIOR)

CONSUMPTIONFOOD = 1.1

CONSUMPTIONWATER = 1.1

DECAY = 0.75

ENERGY = 800

ESCORT = 0.25

GROWTH = 1.10

POPULATION.MINIMUM = 0.1

SIGHT = 4

SMELL = 15

A.2.5 Workers (WORKER)

BOLDNESS = ENUMERATIONSBOLDNESSP ASSIV E

CARRY ING.CAPACITY = 10

CONSUMPTIONFOOD = 1

CONSUMPTIONWATER = 1

ENERGY = 750

GROWTH = 1.10

NO.FOCUS = 0.25

SIGHT = 3

SMELL = 10

STOCHASTIC.PROBABILITY = 0.05

A.3 Threat-speci�c environment variables (ENV IRONMENT)

A.3.1 Universal (THREAT)

KILL.TIMEARCHITECT = 3

KILL.TIMEWARRIOR = 7

KILL.TIMEWORKER = 5

A.3.2 Predators (PREDATOR)

HEALTH.POINTS = 5

NOURISHMENT = 3

SIGHT = 5

LIFESPAN = 3, 000

21

A.3.3 Hunters (HUNTERS)

HEALTH.POINTS = 4

NOURISHMENT = 3

PHEREMONES = 50

SIGHT = 4

LIFESPAN = 2, 500

A.3.4 Stalkers (STALKER)

HEALTH.POINTS = 5

NOURISHMENT = 3

SIGHT = 3

SMELL = 10

LIFESPAN = 3, 000

22

B Function de�nitions

Note: Only functions that need to be explained will be documented here.

Note: When resolving objects in line-of-sense (LoS), the resulting list will always be enumerated in terms of
increasing distance.

B.1 Global functions

int angleO�set(agent, object) : returns the number of degrees the agent would need to turn to face the object.

bool clearPath(object, object) : true if there are no walls on a straight line between the two objects..

bool containsWarrior(list<agent>) : true if the provided list contains a warrior unt.

int distance(object, object) : computes the distance between two objects. If the second object is at the same
co-ordinates (x, y) as the �rst, this is 0; if abs(x1 − x2) ≤ 1 and abs(y1 − y2) ≤ 1, this is 1; else, this is
abs(x1 − x2) + abs(y1 − y2) with 1 subtracted if abs(x1 − x2) > 0 and abs(y1 − y2) > 0.

bool exists (agent) : true if the speci�ed agent is still present on the �eld.

bool exists (signal) : true if the space occupied by the signal still contains the signal's pheromone type.

bool isAgent(object) : true if the object referenced is an instance of an agent.

bool isOpen(space) : true if the space speci�ed is open.

bool isSignal (object) : true if the object referenced is an instance of a signal.

bool isThreat(agent, agent) : true if the second agent is a threat to the �rst one.

bool isUnt(agent) : true if the agent speci�ed is an unt.

bool isWarrior(agent) : true if the agent speci�ed is a warrior unt.

type resourceType(resource) : returns the type of the speci�ed resources.

int signalStrength(location , type, colony=None) : returns the strength of the speci�ed type of pheromone at
the speci�ed location. colony, if speci�ed, serves to �lter the signals evaluated.

type signalType(signal) : returns the pheromone type of the speci�ed signal.

signal strongestSignal(list <signal>) : returns the strongest signal in the provided list.

signal weakestSignal(list<signal>) : returns the weakest signal in the provided list.

B.2 Agent functions

bool advance() : causes the agent to walk one space forward along its current heading; success is returned.

list <agent> agentsInLoS() : builds a list of all agents within the active agent's line of sight, ordered by proximity.

void attack(agent) : causes the agent to attack the target, in�icting damage or killing it, while also taking
appropriate damage itself.

void avoid(object) : causes the agent to add the object to the list of things it needs to stay away from.

bool canSense(agent) : true if the speci�ed agent is in the active agent's line of sight.

bool canSense(signal) : true if the space occupied by the signal still contains the signal's pheromone type and the
space is in the active agent's line of smell.

void follow(object) : causes the agent to turn directly towards the speci�ed object, sets the object as the agent's
target, and sets the agent's status to ENUMERATIONSFOLLOWING.

23

bool harvest(resource) : causes the agent to harvest the speci�ed resource, and sets the resource type as the
agent's carrying. If it fails because the resource is depleted, carrying isn't set and false is returned.

hill locateNearestHill () : locates the hill closest to the agent that belongs to the agent's colony.

void move() : initiates path�nding logic.

void producePheremone(type) : causes the agent to deposit pheromones of the speci�ed type at its current
location.

list <resource> resourcesInLoS() : builds a list of all resources within the active agent's line of sight, ordered by
proximity.

list <signal> signalsInLoS() : builds a list of all signals within the active agent's line of smell, ordered by
proximity.

list <signal> signalsInMoore() : builds a list of all signals within the active agent's Moore neighbourhood, with
signals returned in strictly random order.

list <space> spacesInMoore() : builds a list of all spaces within the active agent's Moore neighbourhood, with
spaces returned in strictly random order.

24

