
CPSC 565 Term Project Conference-style Paper

Neil Tallim

December 2, 2008

Contents

I Summary 2

1 What this project was supposed to do 2

2 What has been prepared 2

3 What the system looks like 3

4 What the system looks like in action 4

II What changed during implementation 5

5 Behaviour and design 5

6 Optimizations 6

III The value of this project 6

7 Research value 7

8 Academic value 7

IV Conclusion 7

1



Part I

Summary

1 What this project was supposed to do

In addition to, naturally, being an attempt at securing a passing grade in this
course to make graduation a possibility, this project was conceived of as a means
of blending an introduction to emergent concepts with a fun idea that is acces-
sible to almost everyone: ants and conquest.

My vision was to build not just an engine that would allow for those of us with
overactive imaginations to make their sugar-high-induced daydreams of ants
with swords a virtual reality (yes, I did mentally picture that while trying to
come up with an idea for this project, and it was too hilarious to pass up), but
to do so in a manner that would allow for colonies to evolve like empires, all
without violating the basic curiosity of emergence: the actions and decisions of
individuals move the collective whole. And, because these individuals were ants,
I had to �nd a way to do it that allowed them to have no memory of what they
did before, while dealing with having very little in the way of communications
infrastructure; needless to say, I found this to be a very fascinating objective.

2 What has been prepared

This project has resulted in a system that makes use of a custom simulation en-
gine and uses breve as a canvas. Existing as a Python 2.3-based implementation
of the speci�cations found in Neil Tallim's �CPSC 565 Term Project Develop-
ment Guide�, it o�ers the following features:

• Agent reproduction

• Agent death

• Colony expansion

• Decision-making

• Memory-free behaviour logic

• Memory-free path�nding

• Resource competition

• Stateful environments

• Survival logic

2



• Swarm logic

• Task-switching

For an in-depth look at how these features work, please consult the implemen-
tation's source code (published under the GPLv2), or see the afore-mentioned
�CPSC 565 Term Project Development Guide� (provided as public domain mate-
rial). Note: Because all of the math upon which this project is based is presented
in the Development Guide, it will not be reiterated here in any form, which will
cause this paper to be comparatively shorter than that narrow-margined, 24-
page behemoth, to say nothing of the size of the code or its accompanying
documentation.

For ideas about what can be done with this system (it's far, far more �exible
than this feature list makes it out to be), see Section 8 on page 7.

3 What the system looks like

The system actually holds pretty true to the �rst concept sketch that was pre-
pared:

Figure 1: Early conceptual rendering of the system

3



Figure 2: Screenshot of the delivered system

In the latter diagram, the small circles are workers, the larger circles are warriors,
the coloured squares are hills, and the grey squares are food and water.

The fullness of each resource is indicated by transparency: those that are mostly
drained will be nearly invisible, while those that are full will be opaque.

Pictured between each colony (colour)'s zones are walls (the black squares) and
sponges (the grey squares). These o�er this particular simulation a way of
preventing contact between colonies until they've had time to mature.

4 What the system looks like in action

A video from which the above screenshot was taken was provided with this docu-
ment (please do not redistribute this paper without making the video available).

4



In it, you will see a number (but certainly not all) of the behaviours this system
has to o�er as the four colonies grow, die, and grow again.

Unfortunately, however, the video is based on a slightly broken version of the
code: agents were not able to properly detect pheromones that were within
their base sense radius because of a mistake during optimization (this has, of
course, been corrected); additionally, once red has gathered enough resources
to try growing again after dying, it produces architects instead of workers and
warriors because of a typographical error (this, too, was �xed). Neither of these
issues lessens the sense of scale presented by the video, so it is still considered
a valuable reference.

Part II

What changed during

implementation

5 Behaviour and design

A number of little tweaks and behavioural enhancements were made during
implementation because a cool idea popped into my head or I realized that my
original specs were too limited in some way. Among these alterations are the
following highlights:

• Stochastic workers no longer avoid pheromone trails. Rather, they just
pretend that they do not exist. The net e�ect is similar � they will discover
untouched resources � but they will take less time to process and they're
easier to maintain, code-wise.

• As any agent appears on the map, either through creation or by being
dispatched from a hill, their orientation will be randomized; this will result
in much more uniform dispersion patterns than always having them face
in their previous direction (or, in the original implication, facing up, which
had an ugly fountain e�ect that was very quickly altered)

• Things were gradually uni�ed under a class hierarchy to make operations
cleaner and faster. While not really signi�cant to the functionality of the
system, it does make it very easy to de�ne new agents and objects with
the expectation of having them �just work�, which may be very useful to
other developers.

5



6 Optimizations

Naturally, the math that was prepared to serve as the basis of this system was
written in a manner that assumed instantaneous evaluation in a parallel manner.
Because computers exist outside of the realm of theory, in the land of reality, it
was necessary to change some things that were stated in the original specs to
faster alternatives that sacri�ced some precision for better performance.

First and foremost among the changes is the manner in which pheromones are
handled. While, previously, they were de�ned as gasses that would drift over
time (with compounding e�ects and choking properties in con�ned spaces), they
were reimplemented as singular entities that worked based on a modi�ed inverse-
square principle: if the source was beyond the agent's sensing range, the radius
used in calculations would be modi�ed to subtract the sensing range; otherwise,
it would be intensi�ed on a linear scale through reciprocal division. This sounds
like a major di�erence and, indeed, it does change some things dramatically �
sensing pheromones around walls, for example � but it produces comparable
results for the most part, and it is so much faster that the decision to sacri�ce
precision isn't even regrettable.

While not really an optimization because it was not formally de�ned before, the
spaces-in-range look-up functions underwent a ton of revisions; the changes in
algorithms used could probably be used as a small paper in a complexity theory
course. Su�ce it to say that I am still not satis�ed, but I think I got it down
to 4n(n − 1). Because that's still pretty high, given that there are additional
checks and shadow-mapping techniques required on top of that, when it seems
like it would be more e�cient to do so, rather than look at all nearby spaces
to �nd out if they contain anything interesting, all objects are asked if they're
near enough to be interesting instead; at least the distance algorithm works in
constant time, so it's just n � albeit, a much larger n in many cases.

A�ected by the previous optimization, however, is agent interaction. Because
agents can speak directly, they will sometimes have access to knowledge that's
newer than what those that came earlier in the tick cycle will have been privy
to. Previously, this issue was addressed by having all agents work o� of the
previous tick's environment-state, but that's no longer possible (though the
speedups easily o�set that regret). To deal with this, the turn order of each
agent is uniformly randomized each tick, which should ultimately minimize the
negative e�ects of this shortcut. Threats, not needing to know what their peers
are doing, are not a�ected by this, and do not need to be randomized.

6



Part III

The value of this project

7 Research value

This system only loosely models the behaviour of ants, making it, in its current
form, unusable for simulating anything that actually happens in nature. How-
ever, it does provide an architecture that could be retooled to cover the basics
of Deborah Gordon's harvester ant research if a su�ciently interested individual
feels like taking on that task.

8 Academic value

As a curiosity, this system could be the basis of interesting evolutionary algo-
rithm work, with the addition of some simple statistics-gathering and reporting
functions. Tuning the behaviour of each individual class of agent or dividing a
�eld with walls and growing multiple colonies in the same situations in paral-
lel could provide for interesting projects in �nding patterns of equilibrium and
di�erent ways it can come about. Classes can also be easily disabled, so if some-
one just happens to like the framework I've built and wants to use it to model
gathering patterns, warriors, architects, builders, and reproduction itself can be
entirely disabled; alternatively, if someone wants to make a survival scenario in
which they try to �nd out how long workers in a maze can survive being hunted
by a couple of predators, the code to support that is already done � they just
need to set the initial state and pheromone parameters (and, perhaps, write a
script that designates an area as a safe zone by placing pheromones to lure the
workers before sealing the corridor with walls and opening a new path for those
who made it in time).

Additionally, this project may provide a future Python-familiar developer with
some ideas about how things can be handled in breve to more readily produce
entirely di�erent projects without having to look for the same resources I had
to �nd.

Part IV

Conclusion

Overall, I feel that this project has been highly worthwhile. It is incredibly
rare that I will actually have fun while working on anything for school, yet the

7



freedom to explore a�orded by this class, coupled with the interesting scope it
asked us to examine, which led to the creation of the idea that resulted in the
system presented to you today, has kept me interested for an entire semester.

While the scale of this idea may have been excessively massive for an undergrad
term project, I feel I have delivered on the promises I made at the onset of this
course. My only lamentation is that the code is not nearly as optimized as it
would have been had I not lost a week of planned work time, which causes it to
run far too slowly to handle complex scenarios on modern desktops; small-scale
simulations, however, are very snappy, often running in near-real-time.

As a �nal statement, I'd just like to say thank you for taking the time to follow
along with this project, and I hope you �nd a use for it in the future.

8


